11
6

A Tutorial Introduction to Reinforcement Learning

Abstract

In this paper, we present a brief survey of Reinforcement Learning (RL), with particular emphasis on Stochastic Approximation (SA) as a unifying theme. The scope of the paper includes Markov Reward Processes, Markov Decision Processes, Stochastic Approximation algorithms, and widely used algorithms such as Temporal Difference Learning and QQ-learning.

View on arXiv
Comments on this paper