ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.01508
366
14
v1v2v3 (latest)

EPVT: Environment-aware Prompt Vision Transformer for Domain Generalization in Skin Lesion Recognition

International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2023
4 April 2023
Siyuan Yan
Chih-Chen Liu
Zhen Yu
Lie Ju
Dwarikanath Mahapatrainst
Victoria Mar
Monika Janda
Peter Soyer
Z. Ge
    ViTMedImVLM
ArXiv (abs)PDFHTMLGithub (18★)
Abstract

Skin lesion recognition using deep learning has made remarkable progress, and there is an increasing need for deploying these systems in real-world scenarios. However, recent research has revealed that deep neural networks for skin lesion recognition may overly depend on disease-irrelevant image artifacts (i.e., dark corners, dense hairs), leading to poor generalization in unseen environments. To address this issue, we propose a novel domain generalization method called EPVT, which involves embedding prompts into the vision transformer to collaboratively learn knowledge from diverse domains. Concretely, EPVT leverages a set of domain prompts, each of which plays as a domain expert, to capture domain-specific knowledge; and a shared prompt for general knowledge over the entire dataset. To facilitate knowledge sharing and the interaction of different prompts, we introduce a domain prompt generator that enables low-rank multiplicative updates between domain prompts and the shared prompt. A domain mixup strategy is additionally devised to reduce the co-occurring artifacts in each domain, which allows for more flexible decision margins and mitigates the issue of incorrectly assigned domain labels. Experiments on four out-of-distribution datasets and six different biased ISIC datasets demonstrate the superior generalization ability of EPVT in skin lesion recognition across various environments. Code is avaliable at https://github.com/SiyuanYan1/EPVT.

View on arXiv
Comments on this paper