ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.03133
17
7

Deep learning reduces sensor requirements for gust rejection on a small uncrewed aerial vehicle morphing wing

6 April 2023
Kevin P. T. Haughn
C. Harvey
D. J. Inman
    AI4CE
ArXivPDFHTML
Abstract

There is a growing need for uncrewed aerial vehicles (UAVs) to operate in cities. However, the uneven urban landscape and complex street systems cause large-scale wind gusts that challenge the safe and effective operation of UAVs. Current gust alleviation methods rely on traditional control surfaces and computationally expensive modeling to select a control action, leading to a slower response. Here, we used deep reinforcement learning to create an autonomous gust alleviation controller for a camber-morphing wing. This method reduced gust impact by 84%, directly from real-time, on-board pressure signals. Notably, we found that gust alleviation using signals from only three pressure taps was statistically indistinguishable from using six signals. This reduced-sensor fly-by-feel control opens the door to UAV missions in previously inoperable locations.

View on arXiv
Comments on this paper