ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.03164
16
4

Synthesizing Anyone, Anywhere, in Any Pose

6 April 2023
Håkon Hukkelås
Frank Lindseth
ArXivPDFHTML
Abstract

We address the task of in-the-wild human figure synthesis, where the primary goal is to synthesize a full body given any region in any image. In-the-wild human figure synthesis has long been a challenging and under-explored task, where current methods struggle to handle extreme poses, occluding objects, and complex backgrounds. Our main contribution is TriA-GAN, a keypoint-guided GAN that can synthesize Anyone, Anywhere, in Any given pose. Key to our method is projected GANs combined with a well-crafted training strategy, where our simple generator architecture can successfully handle the challenges of in-the-wild full-body synthesis. We show that TriA-GAN significantly improves over previous in-the-wild full-body synthesis methods, all while requiring less conditional information for synthesis (keypoints \vs DensePose). Finally, we show that the latent space of TriA-GAN is compatible with standard unconditional editing techniques, enabling text-guided editing of generated human figures.

View on arXiv
Comments on this paper