ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.03779
14
0

A roadmap to fair and trustworthy prediction model validation in healthcare

7 April 2023
Yilin Ning
V. Volovici
M. Ong
B. Goldstein
Nan Liu
ArXivPDFHTML
Abstract

A prediction model is most useful if it generalizes beyond the development data with external validations, but to what extent should it generalize remains unclear. In practice, prediction models are externally validated using data from very different settings, including populations from other health systems or countries, with predictably poor results. This may not be a fair reflection of the performance of the model which was designed for a specific target population or setting, and may be stretching the expected model generalizability. To address this, we suggest to externally validate a model using new data from the target population to ensure clear implications of validation performance on model reliability, whereas model generalizability to broader settings should be carefully investigated during model development instead of explored post-hoc. Based on this perspective, we propose a roadmap that facilitates the development and application of reliable, fair, and trustworthy artificial intelligence prediction models.

View on arXiv
Comments on this paper