ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.03907
12
10

Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding

8 April 2023
Tongzheng Ren
Zhaolin Ren
Haitong Ma
Na Li
Bo Dai
ArXivPDFHTML
Abstract

This paper presents an approach, Spectral Dynamics Embedding Control (SDEC), to optimal control for nonlinear stochastic systems. This method leverages an infinite-dimensional feature to linearly represent the state-action value function and exploits finite-dimensional truncation approximation for practical implementation. To characterize the effectiveness of these finite dimensional approximations, we provide an in-depth theoretical analysis to characterize the approximation error induced by the finite-dimension truncation and statistical error induced by finite-sample approximation in both policy evaluation and policy optimization. Our analysis includes two prominent kernel approximation methods: truncations onto random features and Nystrom features. We also empirically test the algorithm and compare the performance with Koopman-based, iLQR, and energy-based methods on a few benchmark problems.

View on arXiv
Comments on this paper