ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.04027
6
4

NeBLa: Neural Beer-Lambert for 3D Reconstruction of Oral Structures from Panoramic Radiographs

8 April 2023
si-chan park
Seongjun Kim
Doeyoung Kwon
Yohan Jang
In-Seok Song
Seung-Hyeop Baek
ArXivPDFHTML
Abstract

Panoramic radiography (Panoramic X-ray, PX) is a widely used imaging modality for dental examination. However, PX only provides a flattened 2D image, lacking in a 3D view of the oral structure. In this paper, we propose NeBLa (Neural Beer-Lambert) to estimate 3D oral structures from real-world PX. NeBLa tackles full 3D reconstruction for varying subjects (patients) where each reconstruction is based only on a single panoramic image. We create an intermediate representation called simulated PX (SimPX) from 3D Cone-beam computed tomography (CBCT) data based on the Beer-Lambert law of X-ray rendering and rotational principles of PX imaging. SimPX aims at not only truthfully simulating PX, but also facilitates the reverting process back to 3D data. We propose a novel neural model based on ray tracing which exploits both global and local input features to convert SimPX to 3D output. At inference, a real PX image is translated to a SimPX-style image with semantic regularization, and the translated image is processed by generation module to produce high-quality outputs. Experiments show that NeBLa outperforms prior state-of-the-art in reconstruction tasks both quantitatively and qualitatively. Unlike prior methods, NeBLa does not require any prior information such as the shape of dental arches, nor the matched PX-CBCT dataset for training, which is difficult to obtain in clinical practice. Our code is available at https://github.com/sihwa-park/nebla.

View on arXiv
Comments on this paper