18
5

Efficient Distributed Decomposition and Routing Algorithms in Minor-Free Networks and Their Applications

Abstract

In the LOCAL model, low-diameter decomposition is a useful tool in designing algorithms, as it allows us to shift from the general graph setting to the low-diameter graph setting, where brute-force information gathering can be done efficiently. Recently, Chang and Su [PODC 2022] showed that any high-conductance network excluding a fixed minor contains a high-degree vertex, so the entire graph topology can be gathered to one vertex efficiently in the CONGEST model using expander routing. Therefore, in networks excluding a fixed minor, many problems that can be solved efficiently in LOCAL via low-diameter decomposition can also be solved efficiently in CONGEST via expander decomposition. In this work, we show improved decomposition and routing algorithms for networks excluding a fixed minor in the CONGEST model. Our algorithms cost poly(logn,1/ϵ)\text{poly}(\log n, 1/\epsilon) rounds deterministically. For bounded-degree graphs, our algorithms finish in O(ϵ1logn)+ϵO(1)O(\epsilon^{-1}\log n) + \epsilon^{-O(1)} rounds. Our algorithms have a wide range of applications, including the following results in CONGEST. 1. A (1ϵ)(1-\epsilon)-approximate maximum independent set in a network excluding a fixed minor can be computed deterministically in O(ϵ1logn)+ϵO(1)O(\epsilon^{-1}\log^\ast n) + \epsilon^{-O(1)} rounds, nearly matching the Ω(ϵ1logn)\Omega(\epsilon^{-1}\log^\ast n) lower bound of Lenzen and Wattenhofer [DISC 2008]. 2. Property testing of any additive minor-closed property can be done deterministically in O(logn)O(\log n) rounds if ϵ\epsilon is a constant or O(ϵ1logn)+ϵO(1)O(\epsilon^{-1}\log n) + \epsilon^{-O(1)} rounds if the maximum degree Δ\Delta is a constant, nearly matching the Ω(ϵ1logn)\Omega(\epsilon^{-1}\log n) lower bound of Levi, Medina, and Ron [PODC 2018].

View on arXiv
Comments on this paper