ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.05048
13
0

Simultaneous Adversarial Attacks On Multiple Face Recognition System Components

11 April 2023
Inderjeet Singh
Kazuya Kakizaki
Toshinori Araki
    CVBM
    AAML
    PICV
ArXivPDFHTML
Abstract

In this work, we investigate the potential threat of adversarial examples to the security of face recognition systems. Although previous research has explored the adversarial risk to individual components of FRSs, our study presents an initial exploration of an adversary simultaneously fooling multiple components: the face detector and feature extractor in an FRS pipeline. We propose three multi-objective attacks on FRSs and demonstrate their effectiveness through a preliminary experimental analysis on a target system. Our attacks achieved up to 100% Attack Success Rates against both the face detector and feature extractor and were able to manipulate the face detection probability by up to 50% depending on the adversarial objective. This research identifies and examines novel attack vectors against FRSs and suggests possible ways to augment the robustness by leveraging the attack vector's knowledge during training of an FRS's components.

View on arXiv
Comments on this paper