ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.06183
17
1

Acoustic absement in detail: Quantifying acoustic differences across time-series representations of speech data

12 April 2023
Matthew C. Kelley
ArXivPDFHTML
Abstract

The speech signal is a consummate example of time-series data. The acoustics of the signal change over time, sometimes dramatically. Yet, the most common type of comparison we perform in phonetics is between instantaneous acoustic measurements, such as formant values. In the present paper, I discuss the concept of absement as a quantification of differences between two time-series. I then provide an experimental example of absement applied to phonetic analysis for human and/or computer speech recognition. The experiment is a template-based speech recognition task, using dynamic time warping to compare the acoustics between recordings of isolated words. A recognition accuracy of 57.9% was achieved. The results of the experiment are discussed in terms of using absement as a tool, as well as the implications of using acoustics-only models of spoken word recognition with the word as the smallest discrete linguistic unit.

View on arXiv
Comments on this paper