ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.06706
243
683
v1v2v3 (latest)

Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields

IEEE International Conference on Computer Vision (ICCV), 2023
13 April 2023
Jonathan T. Barron
B. Mildenhall
Dor Verbin
Pratul P. Srinivasan
Peter Hedman
ArXiv (abs)PDFHTML
Abstract

Neural Radiance Field training can be accelerated through the use of grid-based representations in NeRF's learned mapping from spatial coordinates to colors and volumetric density. However, these grid-based approaches lack an explicit understanding of scale and therefore often introduce aliasing, usually in the form of jaggies or missing scene content. Anti-aliasing has previously been addressed by mip-NeRF 360, which reasons about sub-volumes along a cone rather than points along a ray, but this approach is not natively compatible with current grid-based techniques. We show how ideas from rendering and signal processing can be used to construct a technique that combines mip-NeRF 360 and grid-based models such as Instant NGP to yield error rates that are 8% - 76% lower than either prior technique, and that trains 22x faster than mip-NeRF 360.

View on arXiv
Comments on this paper