ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.07296
24
4

MLOps Spanning Whole Machine Learning Life Cycle: A Survey

13 April 2023
Fang Zhengxin
Yuan Yi
Zhang Jingyu
Liu Yue
Mu Yuechen
Luan Qinghua
Xu Xiwei
Wang Jeff
Wang Chen
Zhang Shuai
Chen Shiping
ArXivPDFHTML
Abstract

Google AlphaGos win has significantly motivated and sped up machine learning (ML) research and development, which led to tremendous ML technical advances and wider adoptions in various domains (e.g., Finance, Health, Defense, and Education). These advances have resulted in numerous new concepts and technologies, which are too many for people to catch up to and even make them confused, especially for newcomers to the ML area. This paper is aimed to present a clear picture of the state-of-the-art of the existing ML technologies with a comprehensive survey. We lay out this survey by viewing ML as a MLOps (ML Operations) process, where the key concepts and activities are collected and elaborated with representative works and surveys. We hope that this paper can serve as a quick reference manual (a survey of surveys) for newcomers (e.g., researchers, practitioners) of ML to get an overview of the MLOps process, as well as a good understanding of the key technologies used in each step of the ML process, and know where to find more details.

View on arXiv
Comments on this paper