ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.08295
24
110

Interactive and Explainable Region-guided Radiology Report Generation

17 April 2023
Tim Tanida
Philip Muller
Georgios Kaissis
Daniel Rueckert
    MedIm
ArXivPDFHTML
Abstract

The automatic generation of radiology reports has the potential to assist radiologists in the time-consuming task of report writing. Existing methods generate the full report from image-level features, failing to explicitly focus on anatomical regions in the image. We propose a simple yet effective region-guided report generation model that detects anatomical regions and then describes individual, salient regions to form the final report. While previous methods generate reports without the possibility of human intervention and with limited explainability, our method opens up novel clinical use cases through additional interactive capabilities and introduces a high degree of transparency and explainability. Comprehensive experiments demonstrate our method's effectiveness in report generation, outperforming previous state-of-the-art models, and highlight its interactive capabilities. The code and checkpoints are available at https://github.com/ttanida/rgrg .

View on arXiv
Comments on this paper