ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.09995
38
2
v1v2 (latest)

Data as voters: instance selection using approval-based multi-winner voting

19 April 2023
Luis Sánchez-Fernández
J. A. Fisteus
Rafael López-Zaragoza
ArXiv (abs)PDFHTML
Abstract

We present a novel approach to the instance selection problem in machine learning (or data mining). Our approach is based on recent results on (proportional) representation in approval-based multi-winner elections. In our model, instances play a double role as voters and candidates. Each instance in the training set (acting as a voter) approves of the instances (playing the role of candidates) belonging to its local set (except itself), a concept already existing in the literature. We then select the election winners using a representative voting rule, and such winners are the data instances kept in the reduced training set.

View on arXiv
Comments on this paper