ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.10289
13
3

Aiding reinforcement learning for set point control

20 April 2023
Ruoqing Zhang
Per Mattsson
T. Wigren
ArXivPDFHTML
Abstract

While reinforcement learning has made great improvements, state-of-the-art algorithms can still struggle with seemingly simple set-point feedback control problems. One reason for this is that the learned controller may not be able to excite the system dynamics well enough initially, and therefore it can take a long time to get data that is informative enough to learn for good control. The paper contributes by augmentation of reinforcement learning with a simple guiding feedback controller, for example, a proportional controller. The key advantage in set point control is a much improved excitation that improves the convergence properties of the reinforcement learning controller significantly. This can be very important in real-world control where quick and accurate convergence is needed. The proposed method is evaluated with simulation and on a real-world double tank process with promising results.

View on arXiv
Comments on this paper