ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.10309
17
9

Improving Speech Translation by Cross-Modal Multi-Grained Contrastive Learning

20 April 2023
Hao Zhang
Nianwen Si
Yaqi Chen
Wenlin Zhang
Xukui Yang
Dan Qu
Weiqiang Zhang
ArXivPDFHTML
Abstract

The end-to-end speech translation (E2E-ST) model has gradually become a mainstream paradigm due to its low latency and less error propagation. However, it is non-trivial to train such a model well due to the task complexity and data scarcity. The speech-and-text modality differences result in the E2E-ST model performance usually inferior to the corresponding machine translation (MT) model. Based on the above observation, existing methods often use sharingmechanisms to carry out implicit knowledge transfer by imposing various constraints. However, the final model often performs worse on the MT task than the MT model trained alone, which means that the knowledge transfer ability of this method is also limited. To deal with these problems, we propose the FCCL (Fine- and Coarse- Granularity Contrastive Learning) approach for E2E-ST, which makes explicit knowledge transfer through cross-modal multi-grained contrastive learning. A key ingredient of our approach is applying contrastive learning at both sentence- and frame-level to give the comprehensive guide for extracting speech representations containing rich semantic information.In addition, we adopt a simple whitening method to alleviate the representation degeneration in the MT model, which adversely affects contrast learning. Experiments on the MuST-C benchmark show that our proposed approach significantly outperforms the state-of-the-art E2E-ST baselines on all eight language pairs. Further analysis indicates that FCCL can free up its capacity from learning grammatical structure information and force more layers to learn semantic information.

View on arXiv
Comments on this paper