ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.10714
13
3

Picking Up Quantization Steps for Compressed Image Classification

21 April 2023
Li Ma
Peixi Peng
Guangyao Chen
Yifan Zhao
Siwei Dong
Yonghong Tian
ArXivPDFHTML
Abstract

The sensitivity of deep neural networks to compressed images hinders their usage in many real applications, which means classification networks may fail just after taking a screenshot and saving it as a compressed file. In this paper, we argue that neglected disposable coding parameters stored in compressed files could be picked up to reduce the sensitivity of deep neural networks to compressed images. Specifically, we resort to using one of the representative parameters, quantization steps, to facilitate image classification. Firstly, based on quantization steps, we propose a novel quantization aware confidence (QAC), which is utilized as sample weights to reduce the influence of quantization on network training. Secondly, we utilize quantization steps to alleviate the variance of feature distributions, where a quantization aware batch normalization (QABN) is proposed to replace batch normalization of classification networks. Extensive experiments show that the proposed method significantly improves the performance of classification networks on CIFAR-10, CIFAR-100, and ImageNet. The code is released on https://github.com/LiMaPKU/QSAM.git

View on arXiv
Comments on this paper