ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.10902
9
5

Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax Problems

21 April 2023
Feihu Huang
Songcan Chen
ArXivPDFHTML
Abstract

Minimax optimization plays an important role in many machine learning tasks such as generative adversarial networks (GANs) and adversarial training. Although recently a wide variety of optimization methods have been proposed to solve the minimax problems, most of them ignore the distributed setting where the data is distributed on multiple workers. Meanwhile, the existing decentralized minimax optimization methods rely on the strictly assumptions such as (strongly) concavity and variational inequality conditions. In the paper, thus, we propose an efficient decentralized momentum-based gradient descent ascent (DM-GDA) method for the distributed nonconvex-PL minimax optimization, which is nonconvex in primal variable and is nonconcave in dual variable and satisfies the Polyak-Lojasiewicz (PL) condition. In particular, our DM-GDA method simultaneously uses the momentum-based techniques to update variables and estimate the stochastic gradients. Moreover, we provide a solid convergence analysis for our DM-GDA method, and prove that it obtains a near-optimal gradient complexity of O(ϵ−3)O(\epsilon^{-3})O(ϵ−3) for finding an ϵ\epsilonϵ-stationary solution of the nonconvex-PL stochastic minimax problems, which reaches the lower bound of nonconvex stochastic optimization. To the best of our knowledge, we first study the decentralized algorithm for Nonconvex-PL stochastic minimax optimization over a network.

View on arXiv
Comments on this paper