ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.12810
11
11

Transcending the "Male Code": Implicit Masculine Biases in NLP Contexts

22 April 2023
Katie Seaborn
Shruti Chandra
Thibault Fabre
ArXivPDFHTML
Abstract

Critical scholarship has elevated the problem of gender bias in data sets used to train virtual assistants (VAs). Most work has focused on explicit biases in language, especially against women, girls, femme-identifying people, and genderqueer folk; implicit associations through word embeddings; and limited models of gender and masculinities, especially toxic masculinities, conflation of sex and gender, and a sex/gender binary framing of the masculine as diametric to the feminine. Yet, we must also interrogate how masculinities are "coded" into language and the assumption of "male" as the linguistic default: implicit masculine biases. To this end, we examined two natural language processing (NLP) data sets. We found that when gendered language was present, so were gender biases and especially masculine biases. Moreover, these biases related in nuanced ways to the NLP context. We offer a new dictionary called AVA that covers ambiguous associations between gendered language and the language of VAs.

View on arXiv
Comments on this paper