ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.13820
19
1

Backpropagation and F-adjoint

29 March 2023
A. Boughammoura
    FedML
ArXivPDFHTML
Abstract

This paper presents a concise mathematical framework for investigating both feed-forward and backward process, during the training to learn model weights, of an artificial neural network (ANN). Inspired from the idea of the two-step rule for backpropagation, we define a notion of F-adjoint which is aimed at a better description of the backpropagation algorithm. In particular, by introducing the notions of F-propagation and F-adjoint through a deep neural network architecture, the backpropagation associated to a cost/loss function is proven to be completely characterized by the F-adjoint of the corresponding F-propagation relatively to the partial derivative, with respect to the inputs, of the cost function.

View on arXiv
Comments on this paper