ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.13922
14
2

Level Assembly as a Markov Decision Process

27 April 2023
Colan F. Biemer
Seth Cooper
ArXivPDFHTML
Abstract

Many games feature a progression of levels that doesn't adapt to the player. This can be problematic because some players may get stuck if the progression is too difficult, while others may find it boring if the progression is too slow to get to more challenging levels. This can be addressed by building levels based on the player's performance and preferences. In this work, we formulate the problem of generating levels for a player as a Markov Decision Process (MDP) and use adaptive dynamic programming (ADP) to solve the MDP before assembling a level. We tested with two case studies and found that using an ADP outperforms two baselines. Furthermore, we experimented with player proxies and switched them in the middle of play, and we show that a simple modification prior to running ADP results in quick adaptation. By using ADP, which searches the entire MDP, we produce a dynamic progression of levels that adapts to the player.

View on arXiv
Comments on this paper