ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.14123
21
2

MCLFIQ: Mobile Contactless Fingerprint Image Quality

27 April 2023
Jannis Priesnitz
Axel Weissenfeld
L. Ruzicka
Christian Rathgeb
Bernhard Strobl
Ralph Lessmann
Christoph Busch
ArXivPDFHTML
Abstract

We propose MCLFIQ: Mobile Contactless Fingerprint Image Quality, the first quality assessment algorithm for mobile contactless fingerprint samples. To this end, we re-trained the NIST Fingerprint Image Quality (NFIQ) 2 method, which was originally designed for contact-based fingerprints, with a synthetic contactless fingerprint database. We evaluate the predictive performance of the resulting MCLFIQ model in terms of Error-vs.-Discard Characteristic (EDC) curves on three real-world contactless fingerprint databases using three recognition algorithms. In experiments, the MCLFIQ method is compared against the original NFIQ 2.2 method, a sharpness-based quality assessment algorithm developed for contactless fingerprint images \rev{and the general purpose image quality assessment method BRISQUE. Furthermore, benchmarks on four contact-based fingerprint datasets are also conducted.} Obtained results show that the fine-tuning of NFIQ 2 on synthetic contactless fingerprints is a viable alternative to training on real databases. Moreover, the evaluation shows that our MCLFIQ method works more accurate and robust compared to all baseline methods on contactless fingerprints. We suggest considering the proposed MCLFIQ method as a \rev{starting point for the development of} a new standard algorithm for contactless fingerprint quality assessment.

View on arXiv
Comments on this paper