ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.14629
24
8

DataFlower: Exploiting the Data-flow Paradigm for Serverless Workflow Orchestration

28 April 2023
Zijun Li
Chuhao Xu
Quan Chen
Jieru Zhao
Chen Chen
Minyi Guo
ArXivPDFHTML
Abstract

Serverless computing that runs functions with auto-scaling is a popular task execution pattern in the cloud-native era. By connecting serverless functions into workflows, tenants can achieve complex functionality. Prior researches adopt the control-flow paradigm to orchestrate a serverless workflow. However, the control-flow paradigm inherently results in long response latency, due to the heavy data persistence overhead, sequential resource usage, and late function triggering. Our investigation shows that the data-flow paradigm has the potential to resolve the above problems, with careful design and optimization. We propose DataFlower, a scheme that achieves the data-flow paradigm for serverless workflows. In DataFlower, a container is abstracted to be a function logic unit and a data logic unit. The function logic unit runs the functions, and the data logic unit handles the data transmission asynchronously. Moreover, a host-container collaborative communication mechanism is used to support efficient data transfer. Our experimental results show that compared to state-of-the-art serverless designs, DataFlower reduces the 99\%-ile latency of the benchmarks by up to 35.4\%, and improves the peak throughput by up to 3.8X.

View on arXiv
Comments on this paper