ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.14647
61
19

An Adaptive Policy to Employ Sharpness-Aware Minimization

28 April 2023
Weisen Jiang
Hansi Yang
Yu Zhang
James T. Kwok
    AAML
ArXivPDFHTML
Abstract

Sharpness-aware minimization (SAM), which searches for flat minima by min-max optimization, has been shown to be useful in improving model generalization. However, since each SAM update requires computing two gradients, its computational cost and training time are both doubled compared to standard empirical risk minimization (ERM). Recent state-of-the-arts reduce the fraction of SAM updates and thus accelerate SAM by switching between SAM and ERM updates randomly or periodically. In this paper, we design an adaptive policy to employ SAM based on the loss landscape geometry. Two efficient algorithms, AE-SAM and AE-LookSAM, are proposed. We theoretically show that AE-SAM has the same convergence rate as SAM. Experimental results on various datasets and architectures demonstrate the efficiency and effectiveness of the adaptive policy.

View on arXiv
Comments on this paper