ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.00169
32
1

An Evidential Real-Time Multi-Mode Fault Diagnosis Approach Based on Broad Learning System

29 April 2023
Chen Li
Zeyi Liu
Limin Wang
Minyue Li
Xiao He
ArXivPDFHTML
Abstract

Fault diagnosis is a crucial area of research in industry. Industrial processes exhibit diverse operating conditions, where data often have non-Gaussian, multi-mode, and center-drift characteristics. Data-driven approaches are currently the main focus in the field, but continuous fault classification and parameter updates of fault classifiers pose challenges for multiple operating modes and real-time settings. Thus, a pressing issue is to achieve real-time multi-mode fault diagnosis in industrial systems. In this paper, a novel approach to achieve real-time multi-mode fault diagnosis is proposed for industrial applications, which addresses this critical research problem. Our approach uses an extended evidence reasoning (ER) algorithm to fuse information and merge outputs from different base classifiers. These base classifiers based on broad learning system (BLS) are trained to ensure maximum fault diagnosis accuracy. Furthermore, pseudo-label learning is used to update model parameters in real-time. The effectiveness of the proposed approach is demonstrated on the multi-mode Tennessee Eastman process dataset.

View on arXiv
Comments on this paper