ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.00977
24
1

Generalization for slowly mixing processes

28 April 2023
Andreas Maurer
ArXivPDFHTML
Abstract

A bound uniform over various loss-classes is given for data generated by stationary and phi-mixing processes, where the mixing time (the time needed to obtain approximate independence) enters the sample complexity only in an additive way. For slowly mixing processes this can be a considerable advantage over results with multiplicative dependence on the mixing time. The admissible loss-classes include functions with prescribed Lipschitz norms or smoothness parameters. The bound can also be applied to be uniform over unconstrained loss-classes, where it depends on local Lipschitz properties of the function on the sample path.

View on arXiv
Comments on this paper