ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.01377
11
0

Random Function Descent

2 May 2023
Felix Benning
L. Döring
ArXivPDFHTML
Abstract

Classical worst-case optimization theory neither explains the success of optimization in machine learning, nor does it help with step size selection. We establish a connection between Bayesian Optimization (i.e. average case optimization theory) and classical optimization using a 'stochastic Taylor approximation' to rediscover gradient descent. This rediscovery yields a step size schedule we call Random Function Descent (RFD), which, in contrast to classical derivations, is scale invariant. Furthermore, our analysis of RFD step sizes yields a theoretical foundation for common step size heuristics such as gradient clipping and gradual learning rate warmup. We finally propose a statistical procedure for estimating the RFD step size schedule and validate this theory with a case study on the MNIST dataset.

View on arXiv
Comments on this paper