ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.02033
37
4

Gym-preCICE: Reinforcement Learning Environments for Active Flow Control

3 May 2023
M. Shams
A. Elsheikh
    AI4CE
ArXiv (abs)PDFHTML
Abstract

Active flow control (AFC) involves manipulating fluid flow over time to achieve a desired performance or efficiency. AFC, as a sequential optimisation task, can benefit from utilising Reinforcement Learning (RL) for dynamic optimisation. In this work, we introduce Gym-preCICE, a Python adapter fully compliant with Gymnasium (formerly known as OpenAI Gym) API to facilitate designing and developing RL environments for single- and multi-physics AFC applications. In an actor-environment setting, Gym-preCICE takes advantage of preCICE, an open-source coupling library for partitioned multi-physics simulations, to handle information exchange between a controller (actor) and an AFC simulation environment. The developed framework results in a seamless non-invasive integration of realistic physics-based simulation toolboxes with RL algorithms. Gym-preCICE provides a framework for designing RL environments to model AFC tasks, as well as a playground for applying RL algorithms in various AFC-related engineering applications.

View on arXiv
Comments on this paper