ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.02375
19
2

MaskSearch: Querying Image Masks at Scale

3 May 2023
Dong He
Jieyu Zhang
Maureen Daum
Alexander Ratner
Magdalena Balazinska
    VLM
ArXivPDFHTML
Abstract

Machine learning tasks over image databases often generate masks that annotate image content (e.g., saliency maps, segmentation maps, depth maps) and enable a variety of applications (e.g., determine if a model is learning spurious correlations or if an image was maliciously modified to mislead a model). While queries that retrieve examples based on mask properties are valuable to practitioners, existing systems do not support them efficiently. In this paper, we formalize the problem and propose MaskSearch, a system that focuses on accelerating queries over databases of image masks while guaranteeing the correctness of query results. MaskSearch leverages a novel indexing technique and an efficient filter-verification query execution framework. Experiments with our prototype show that MaskSearch, using indexes approximately 5% of the compressed data size, accelerates individual queries by up to two orders of magnitude and consistently outperforms existing methods on various multi-query workloads that simulate dataset exploration and analysis processes.

View on arXiv
Comments on this paper