ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.03299
22
2

Open Information Extraction via Chunks

5 May 2023
Kuicai Dong
Aixin Sun
Jung-jae Kim
Xiaoli Li
ArXivPDFHTML
Abstract

Open Information Extraction (OIE) aims to extract relational tuples from open-domain sentences. Existing OIE systems split a sentence into tokens and recognize token spans as tuple relations and arguments. We instead propose Sentence as Chunk sequence (SaC) and recognize chunk spans as tuple relations and arguments. We argue that SaC has better quantitative and qualitative properties for OIE than sentence as token sequence, and evaluate four choices of chunks (i.e., CoNLL chunks, simple phrases, NP chunks, and spans from SpanOIE) against gold OIE tuples. Accordingly, we propose a simple BERT-based model for sentence chunking, and propose Chunk-OIE for tuple extraction on top of SaC. Chunk-OIE achieves state-of-the-art results on multiple OIE datasets, showing that SaC benefits OIE task.

View on arXiv
Comments on this paper