ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.03573
13
17

In-context Learning as Maintaining Coherency: A Study of On-the-fly Machine Translation Using Large Language Models

5 May 2023
Suzanna Sia
Kevin Duh
    LRM
ArXivPDFHTML
Abstract

The phenomena of in-context learning has typically been thought of as "learning from examples". In this work which focuses on Machine Translation, we present a perspective of in-context learning as the desired generation task maintaining coherency with its context, i.e., the prompt examples. We first investigate randomly sampled prompts across 4 domains, and find that translation performance improves when shown in-domain prompts. Next, we investigate coherency for the in-domain setting, which uses prompt examples from a moving window. We study this with respect to other factors that have previously been identified in the literature such as length, surface similarity and sentence embedding similarity. Our results across 3 models (GPTNeo2.7B, Bloom3B, XGLM2.9B), and three translation directions (\texttt{en}→\rightarrow→\{\texttt{pt, de, fr}\}) suggest that the long-term coherency of the prompts and the test sentence is a good indicator of downstream translation performance. In doing so, we demonstrate the efficacy of In-context Machine Translation for on-the-fly adaptation.

View on arXiv
Comments on this paper