ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.03678
14
25

Towards Segment Anything Model (SAM) for Medical Image Segmentation: A Survey

5 May 2023
Yichi Zhang
Rushi Jiao
    MedIm
    VLM
ArXivPDFHTML
Abstract

Due to the flexibility of prompting, foundation models have become the dominant force in the domains of natural language processing and image generation. With the recent introduction of the Segment Anything Model (SAM), the prompt-driven paradigm has entered the realm of image segmentation, bringing with a range of previously unexplored capabilities. However, it remains unclear whether it can be applicable to medical image segmentation due to the significant differences between natural images and medical images.In this work, we summarize recent efforts to extend the success of SAM to medical image segmentation tasks, including both empirical benchmarking and methodological adaptations, and discuss potential future directions for SAM in medical image segmentation. Although directly applying SAM to medical image segmentation cannot obtain satisfying performance on multi-modal and multi-target medical datasets, many insights are drawn to guide future research to develop foundation models for medical image analysis. To facilitate future research, we maintain an active repository that contains up-to-date paper list and open-source project summary at https://github.com/YichiZhang98/SAM4MIS.

View on arXiv
Comments on this paper