ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.04021
17
1

A Sea-Land Clutter Classification Framework for Over-the-Horizon-Radar Based on Weighted Loss Semi-supervised GAN

6 May 2023
Xiaoxuan Zhang
Zengfu Wang
Kun Lu
Quanbiao Pan
Yang Li
    GAN
ArXivPDFHTML
Abstract

Deep convolutional neural network has made great achievements in sea-land clutter classification for over-the-horizon-radar (OTHR). The premise is that a large number of labeled training samples must be provided for a sea-land clutter classifier. In practical engineering applications, it is relatively easy to obtain label-free sea-land clutter samples. However, the labeling process is extremely cumbersome and requires expertise in the field of OTHR. To solve this problem, we propose an improved generative adversarial network, namely weighted loss semi-supervised generative adversarial network (WL-SSGAN). Specifically, we propose a joint feature matching loss by weighting the middle layer features of the discriminator of semi-supervised generative adversarial network. Furthermore, we propose the weighted loss of WL-SSGAN by linearly weighting standard adversarial loss and joint feature matching loss. The semi-supervised classification performance of WL-SSGAN is evaluated on a sea-land clutter dataset. The experimental results show that WL-SSGAN can improve the performance of the fully supervised classifier with only a small number of labeled samples by utilizing a large number of unlabeled sea-land clutter samples. Further, the proposed weighted loss is superior to both the adversarial loss and the feature matching loss. Additionally, we compare WL-SSGAN with conventional semi-supervised classification methods and demonstrate that WL-SSGAN achieves the highest classification accuracy.

View on arXiv
Comments on this paper