ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.04120
6
31

A Latent Diffusion Model for Protein Structure Generation

6 May 2023
Cong Fu
Keqiang Yan
Limei Wang
Wing Yee Au
Michael McThrow
Tao Komikado
Koji Maruhashi
Kanji Uchino
Xiaoning Qian
Shuiwang Ji
    DiffM
ArXivPDFHTML
Abstract

Proteins are complex biomolecules that perform a variety of crucial functions within living organisms. Designing and generating novel proteins can pave the way for many future synthetic biology applications, including drug discovery. However, it remains a challenging computational task due to the large modeling space of protein structures. In this study, we propose a latent diffusion model that can reduce the complexity of protein modeling while flexibly capturing the distribution of natural protein structures in a condensed latent space. Specifically, we propose an equivariant protein autoencoder that embeds proteins into a latent space and then uses an equivariant diffusion model to learn the distribution of the latent protein representations. Experimental results demonstrate that our method can effectively generate novel protein backbone structures with high designability and efficiency. The code will be made publicly available at https://github.com/divelab/AIRS/tree/main/OpenProt/LatentDiff

View on arXiv
Comments on this paper