ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.05055
23
4
v1v2v3 (latest)

CPMA: An Efficient Batch-Parallel Compressed Set Without Pointers

8 May 2023
Brian Wheatman
Randal C. Burns
A. Buluç
Helen Xu
ArXiv (abs)PDFHTML
Abstract

This paper introduces the batch-parallel Compressed Packed Memory Array (CPMA), a compressed, dynamic, ordered set data structure based on the Packed Memory Array (PMA). Traditionally, batch-parallel sets are built on pointer-based data structures such as trees because pointer-based structures enable fast parallel unions via pointer manipulation. When compared with cache-optimized trees, PMAs were slower to update but faster to scan. he batch-parallel CPMA overcomes this tradeoff between updates and scans by optimizing for cache-friendliness. On average, the CPMA achieves 3x faster batch-insert throughput and 4x faster range-query throughput compared with compressed PaC-trees, a state-of-the-art batch-parallel set library based on cache-optimized trees. We further evaluate the CPMA compared with compressed PaC-trees and Aspen, a state-of-the-art system, on a real-world application of dynamic-graph processing. The CPMA is on average 1.2x faster on a suite of graph algorithms and 2x faster on batch inserts when compared with compressed PaC-trees. Furthermore, the CPMA is on average 1.3x faster on graph algorithms and 2x faster on batch inserts compared with Aspen.

View on arXiv
Comments on this paper