ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.05392
17
9

Sharpness-Aware Minimization Alone can Improve Adversarial Robustness

9 May 2023
Zeming Wei
Jingyu Zhu
Yihao Zhang
    AAML
ArXivPDFHTML
Abstract

Sharpness-Aware Minimization (SAM) is an effective method for improving generalization ability by regularizing loss sharpness. In this paper, we explore SAM in the context of adversarial robustness. We find that using only SAM can achieve superior adversarial robustness without sacrificing clean accuracy compared to standard training, which is an unexpected benefit. We also discuss the relation between SAM and adversarial training (AT), a popular method for improving the adversarial robustness of DNNs. In particular, we show that SAM and AT differ in terms of perturbation strength, leading to different accuracy and robustness trade-offs. We provide theoretical evidence for these claims in a simplified model. Finally, while AT suffers from decreased clean accuracy and computational overhead, we suggest that SAM can be regarded as a lightweight substitute for AT under certain requirements. Code is available at https://github.com/weizeming/SAM_AT.

View on arXiv
Comments on this paper