ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.05418
32
0
v1v2 (latest)

Measuring Rule-based LTLf Process Specifications: A Probabilistic Data-driven Approach

9 May 2023
Alessio Cecconi
Luca Barbaro
Claudio Di Ciccio
Arik Senderovich
ArXiv (abs)PDFHTML
Abstract

Declarative process specifications define the behavior of processes by means of rules based on Linear Temporal Logic on Finite Traces (LTLf). In a mining context, these specifications are inferred from, and checked on, multi-sets of runs recorded by information systems (namely, event logs). To this end, being able to gauge the degree to which process data comply with a specification is key. However, existing mining and verification techniques analyze the rules in isolation, thereby disregarding their interplay. In this paper, we introduce a framework to devise probabilistic measures for declarative process specifications. Thereupon, we propose a technique that measures the degree of satisfaction of specifications over event logs. To assess our approach, we conduct an evaluation with real-world data, evidencing its applicability in discovery, checking, and drift detection contexts.

View on arXiv
Comments on this paper