ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.05952
22
6

Unraveling the MEV Enigma: ABI-Free Detection Model using Graph Neural Networks

10 May 2023
Seongwan Park
Woo-Kyoung Jeong
Yunyoung Lee
B. Son
H. Jang
Jaewook Lee
ArXivPDFHTML
Abstract

The detection of Maximal Extractable Value (MEV) in blockchain is crucial for enhancing blockchain security, as it enables the evaluation of potential consensus layer risks, the effectiveness of anti-centralization solutions, and the assessment of user exploitation. However, existing MEV detection methods face limitations due to their low recall rate, reliance on pre-registered Application Binary Interfaces (ABIs) and the need for continuous monitoring of new DeFi services. In this paper, we propose ArbiNet, a novel GNN-based detection model that offers a low-overhead and accurate solution for MEV detection without requiring knowledge of smart contract code or ABIs. We collected an extensive MEV dataset, surpassing currently available public datasets, to train ArbiNet. Our implemented model and open dataset enhance the understanding of the MEV landscape, serving as a foundation for MEV quantification and improved blockchain security.

View on arXiv
Comments on this paper