Generative AI meets 3D: A Survey on Text-to-3D in AIGC Era

Generative AI (AIGC, a.k.a. AI generated content) has made significant progress in recent years, with text-guided content generation being the most practical as it facilitates interaction between human instructions and AIGC. Due to advancements in text-to-image and 3D modeling technologies (like NeRF), text-to-3D has emerged as a nascent yet highly active research field. Our work conducts the first comprehensive survey and follows up on subsequent research progress in the overall field, aiming to help readers interested in this direction quickly catch up with its rapid development. First, we introduce 3D data representations, including both Euclidean and non-Euclidean data. Building on this foundation, we introduce various foundational technologies and summarize how recent work combines these foundational technologies to achieve satisfactory text-to-3D results. Additionally, we present mainstream baselines and research directions in recent text-to-3D technology, including fidelity, efficiency, consistency, controllability, diversity, and applicability. Furthermore, we summarize the usage of text-to-3D technology in various applications, including avatar generation, texture generation, shape editing, and scene generation.
View on arXiv