ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.06145
14
4

Clothes-Invariant Feature Learning by Causal Intervention for Clothes-Changing Person Re-identification

10 May 2023
Xulin Li
Yan Lu
B. Liu
Yuenan Hou
Yating Liu
Qi Chu
Wanli Ouyang
Nenghai Yu
    OOD
    CML
ArXivPDFHTML
Abstract

Clothes-invariant feature extraction is critical to the clothes-changing person re-identification (CC-ReID). It can provide discriminative identity features and eliminate the negative effects caused by the confounder--clothing changes. But we argue that there exists a strong spurious correlation between clothes and human identity, that restricts the common likelihood-based ReID method P(Y|X) to extract clothes-irrelevant features. In this paper, we propose a new Causal Clothes-Invariant Learning (CCIL) method to achieve clothes-invariant feature learning by modeling causal intervention P(Y|do(X)). This new causality-based model is inherently invariant to the confounder in the causal view, which can achieve the clothes-invariant features and avoid the barrier faced by the likelihood-based methods. Extensive experiments on three CC-ReID benchmarks, including PRCC, LTCC, and VC-Clothes, demonstrate the effectiveness of our approach, which achieves a new state of the art.

View on arXiv
Comments on this paper