ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.06897
17
13

AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages

11 May 2023
Odunayo Ogundepo
T. Gwadabe
Clara E. Rivera
J. Clark
Sebastian Ruder
David Ifeoluwa Adelani
Bonaventure F. P. Dossou
Abdoulahat Diop
Claytone Sikasote
Gilles Hacheme
Happy Buzaaba
Ignatius M Ezeani
Rooweither Mabuya
Salomey Osei
Chris C. Emezue
A. Kahira
Shamsuddeen Hassan Muhammad
Akintunde Oladipo
A. Owodunni
A. Tonja
Iyanuoluwa Shode
Akari Asai
T. Ajayi
Clemencia Siro
Steven Arthur
Mofetoluwa Adeyemi
Orevaoghene Ahia
Aremu Anuoluwapo
Oyinkansola F. Awosan
Chiamaka Chukwuneke
Bernard Opoku
A. Ayodele
V. Otiende
Christine Mwase
B. Sinkala
Andre Niyongabo Rubungo
Daniel A. Ajisafe
Emeka Onwuegbuzia
Habib Mbow
Emile Niyomutabazi
Eunice Mukonde
F. I. Lawan
I. Ahmad
Jesujoba Oluwadara Alabi
Martin Namukombo
Mbonu Chinedu
Mofya Phiri
Neo Putini
Ndumiso Mngoma
Priscilla Amuok
R. Iro
Sonia Adhiambo34
ArXivPDFHTML
Abstract

African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems -- those that retrieve answer content from other languages while serving people in their native language -- offer a means of filling this gap. To this end, we create AfriQA, the first cross-lingual QA dataset with a focus on African languages. AfriQA includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, AfriQA focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, AfriQA proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.

View on arXiv
Comments on this paper