ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.07920
236
46
v1v2v3 (latest)

Multi-task Paired Masking with Alignment Modeling for Medical Vision-Language Pre-training

IEEE transactions on multimedia (IEEE TMM), 2023
13 May 2023
Kecheng Zhang
Shuai Liu
Jun Yu
Han Jiang
Jianping Fan
Qing-An Huang
Weidong Han
    MedIm
ArXiv (abs)PDFHTML
Abstract

In recent years, the growing demand for medical imaging diagnosis has placed a significant burden on radiologists. As a solution, Medical Vision-Language Pre-training (Med-VLP) methods have been proposed to learn universal representations from medical images and reports, benefiting downstream tasks without requiring fine-grained annotations. However, existing methods have overlooked the importance of cross-modal alignment in joint image-text reconstruction, resulting in insufficient cross-modal interaction. To address this limitation, we propose a unified Med-VLP framework based on Multi-task Paired Masking with Alignment (MPMA) to integrate the cross-modal alignment task into the joint image-text reconstruction framework to achieve more comprehensive cross-modal interaction, while a Global and Local Alignment (GLA) module is designed to assist self-supervised paradigm in obtaining semantic representations with rich domain knowledge. Furthermore, we introduce a Memory-Augmented Cross-Modal Fusion (MA-CMF) module to fully integrate visual information to assist report reconstruction and fuse the multi-modal representations adequately. Experimental results demonstrate that the proposed unified approach outperforms previous methods in all downstream tasks, including uni-modal, cross-modal, and multi-modal tasks.

View on arXiv
Comments on this paper