ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.09022
19
17

It Takes Two to Tango: Navigating Conceptualizations of NLP Tasks and Measurements of Performance

15 May 2023
Arjun Subramonian
Xingdi Yuan
Hal Daumé
Su Lin Blodgett
ArXivPDFHTML
Abstract

Progress in NLP is increasingly measured through benchmarks; hence, contextualizing progress requires understanding when and why practitioners may disagree about the validity of benchmarks. We develop a taxonomy of disagreement, drawing on tools from measurement modeling, and distinguish between two types of disagreement: 1) how tasks are conceptualized and 2) how measurements of model performance are operationalized. To provide evidence for our taxonomy, we conduct a meta-analysis of relevant literature to understand how NLP tasks are conceptualized, as well as a survey of practitioners about their impressions of different factors that affect benchmark validity. Our meta-analysis and survey across eight tasks, ranging from coreference resolution to question answering, uncover that tasks are generally not clearly and consistently conceptualized and benchmarks suffer from operationalization disagreements. These findings support our proposed taxonomy of disagreement. Finally, based on our taxonomy, we present a framework for constructing benchmarks and documenting their limitations.

View on arXiv
Comments on this paper