ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.09070
137
2

An Offline Time-aware Apprenticeship Learning Framework for Evolving Reward Functions

15 May 2023
Xi Yang
Ge Gao
Min Chi
    OffRL
ArXiv (abs)PDFHTML
Abstract

Apprenticeship learning (AL) is a process of inducing effective decision-making policies via observing and imitating experts' demonstrations. Most existing AL approaches, however, are not designed to cope with the evolving reward functions commonly found in human-centric tasks such as healthcare, where offline learning is required. In this paper, we propose an offline Time-aware Hierarchical EM Energy-based Sub-trajectory (THEMES) AL framework to tackle the evolving reward functions in such tasks. The effectiveness of THEMES is evaluated via a challenging task -- sepsis treatment. The experimental results demonstrate that THEMES can significantly outperform competitive state-of-the-art baselines.

View on arXiv
Comments on this paper