ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.09779
170
5
v1v2 (latest)

A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree Spectral Bias of Neural Networks

Conference on Uncertainty in Artificial Intelligence (UAI), 2023
16 May 2023
Ali Gorji
Andisheh Amrollahi
A. Krause
ArXiv (abs)PDFHTML
Abstract

Despite the capacity of neural nets to learn arbitrary functions, models trained through gradient descent often exhibit a bias towards ``simpler'' functions. Various notions of simplicity have been introduced to characterize this behavior. Here, we focus on the case of neural networks with discrete (zero-one), high-dimensional, inputs through the lens of their Fourier (Walsh-Hadamard) transforms, where the notion of simplicity can be captured through the degree of the Fourier coefficients. We empirically show that neural networks have a tendency to learn lower-degree frequencies. We show how this spectral bias towards low-degree frequencies can in fact hurt the neural network's generalization on real-world datasets. To remedy this we propose a new scalable functional regularization scheme that aids the neural network to learn higher degree frequencies. Our regularizer also helps avoid erroneous identification of low-degree frequencies, which further improves generalization. We extensively evaluate our regularizer on synthetic datasets to gain insights into its behavior. Finally, we show significantly improved generalization on four different datasets compared to standard neural networks and other relevant baselines.

View on arXiv
Comments on this paper