ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.09792
12
1

Score Operator Newton transport

16 May 2023
N. Chandramoorthy
F. Schaefer
Youssef Marzouk
    OT
ArXivPDFHTML
Abstract

We propose a new approach for sampling and Bayesian computation that uses the score of the target distribution to construct a transport from a given reference distribution to the target. Our approach is an infinite-dimensional Newton method, involving a linear PDE, for finding a zero of a ``score-residual'' operator. We prove sufficient conditions for convergence to a valid transport map. Our Newton iterates can be computed by exploiting fast solvers for elliptic PDEs, resulting in new algorithms for Bayesian inference and other sampling tasks. We identify elementary settings where score-operator Newton transport achieves fast convergence while avoiding mode collapse.

View on arXiv
Comments on this paper