ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.10114
17
1

Automatic Hyperparameter Tuning in Sparse Matrix Factorization

17 May 2023
Ryota Kawasumi
K. Takeda
ArXivPDFHTML
Abstract

We study the problem of hyperparameter tuning in sparse matrix factorization under Bayesian framework. In the prior work, an analytical solution of sparse matrix factorization with Laplace prior was obtained by variational Bayes method under several approximations. Based on this solution, we propose a novel numerical method of hyperparameter tuning by evaluating the zero point of normalization factor in sparse matrix prior. We also verify that our method shows excellent performance for ground-truth sparse matrix reconstruction by comparing it with the widely-used algorithm of sparse principal component analysis.

View on arXiv
Comments on this paper