ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.10156
12
16

Personality Understanding of Fictional Characters during Book Reading

17 May 2023
Mo Yu
JiangNan Li
Shunyu Yao
Wenjie Pang
Xiaochen Zhou
Zhou Xiao
Fandong Meng
Jie Zhou
ArXivPDFHTML
Abstract

Comprehending characters' personalities is a crucial aspect of story reading. As readers engage with a story, their understanding of a character evolves based on new events and information; and multiple fine-grained aspects of personalities can be perceived. This leads to a natural problem of situated and fine-grained personality understanding. The problem has not been studied in the NLP field, primarily due to the lack of appropriate datasets mimicking the process of book reading. We present the first labeled dataset PersoNet for this problem. Our novel annotation strategy involves annotating user notes from online reading apps as a proxy for the original books. Experiments and human studies indicate that our dataset construction is both efficient and accurate; and our task heavily relies on long-term context to achieve accurate predictions for both machines and humans. The dataset is available at https://github.com/Gorov/personet_acl23.

View on arXiv
Comments on this paper