ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.10839
20
1

A Lexical-aware Non-autoregressive Transformer-based ASR Model

18 May 2023
Chong Lin
Kuan-Yu Chen
    AI4TS
ArXivPDFHTML
Abstract

Non-autoregressive automatic speech recognition (ASR) has become a mainstream of ASR modeling because of its fast decoding speed and satisfactory result. To further boost the performance, relaxing the conditional independence assumption and cascading large-scaled pre-trained models are two active research directions. In addition to these strategies, we propose a lexical-aware non-autoregressive Transformer-based (LA-NAT) ASR framework, which consists of an acoustic encoder, a speech-text shared encoder, and a speech-text shared decoder. The acoustic encoder is used to process the input speech features as usual, and the speech-text shared encoder and decoder are designed to train speech and text data simultaneously. By doing so, LA-NAT aims to make the ASR model aware of lexical information, so the resulting model is expected to achieve better results by leveraging the learned linguistic knowledge. A series of experiments are conducted on the AISHELL-1, CSJ, and TEDLIUM 2 datasets. According to the experiments, the proposed LA-NAT can provide superior results than other recently proposed non-autoregressive ASR models. In addition, LA-NAT is a relatively compact model than most non-autoregressive ASR models, and it is about 58 times faster than the classic autoregressive model.

View on arXiv
Comments on this paper