ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.11074
24
5

Tram: A Token-level Retrieval-augmented Mechanism for Source Code Summarization

18 May 2023
Tong Ye
Lingfei Wu
Tengyu Ma
Xuhong Zhang
Yangkai Du
Peiyu Liu
S. Ji
Wenhai Wang
ArXivPDFHTML
Abstract

Automatically generating human-readable text describing the functionality of a program is the intent of source code summarization. Although neural language models achieve significant performance in this field, they are limited by their inability to access external knowledge. To address this limitation, an emerging trend is combining neural models with external knowledge through retrieval methods. Previous methods have relied on the sentence-level retrieval paradigm on the encoder side. However, this paradigm is coarse-grained, noise-filled and cannot directly take advantage of the high-quality retrieved summary tokens on the decoder side. In this paper, we propose a fine-grained Token-level retrieval-augmented mechanism (Tram) on the decoder side rather than the encoder side to enhance the performance of neural models and produce more low-frequency tokens in generating summaries. Furthermore, to overcome the challenge of token-level retrieval in capturing contextual code semantics, we also propose integrating code semantics into individual summary tokens. The results of extensive experiments and human evaluation show that our token-level retrieval-augmented approach significantly improves performance and is more interpretable.

View on arXiv
Comments on this paper